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Lecture 15 

Physics 404 

 

 We will do statistical mechanics with systems that can exchange particles, in addition to energy, 
with a reservoir.  This is called the Grand Canonical Ensemble of statistical mechanics.  The first goal is to 
find the probability that a system will have 𝑁𝑁 particles and energy 𝜀𝜀𝑠𝑠 .  We will work in analogy with the 
canonical ensemble for systems that exchange energy with a reservoir, where we found the probability 

of occupation of a state of energy 𝜀𝜀𝑠𝑠  to be 
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= , where 𝑍𝑍 is the partition function (see  the 

Lecture 7 summary).  We are now looking for a joint probability that the system has 𝑁𝑁 particles and 
energy 𝜀𝜀𝑠𝑠 , 𝑃𝑃(𝑁𝑁, 𝜀𝜀𝑠𝑠). 

 We assume that the reservoir and system are in equilibrium at temperature 𝜏𝜏 and chemical 
potential 𝜇𝜇.  This means that they are exchanging energy and particles in dynamic equilibrium, with no 
net flow of either quantity.  The combined reservoir + system is isolated and therefore has a fixed total 
energy 𝑈𝑈0 and fixed total particle number 𝑁𝑁0.  If the system has 𝑁𝑁 particles, then the reservoir has 
𝑁𝑁0 −𝑁𝑁 particles.  If the system has energy 𝜀𝜀𝑠𝑠 , then the reservoir has energy 𝑈𝑈0 − 𝜀𝜀𝑠𝑠 .  If we precisely 
define the particle number and precise quantum state (list of quantum numbers ‘s’) of the system, then 
the multiplicity of the reservoir + system is given by that of the reservoir alone, since the state of the 
system is precisely defined: 𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑔𝑔𝑅𝑅(𝑁𝑁0 −𝑁𝑁,𝑈𝑈0 − 𝜀𝜀𝑠𝑠) × 𝑔𝑔𝑆𝑆(𝑁𝑁, 𝜀𝜀𝑠𝑠) = 𝑔𝑔𝑅𝑅(𝑁𝑁0 −𝑁𝑁,𝑈𝑈0 − 𝜀𝜀𝑠𝑠) × 1 , 
where 𝑔𝑔 is the multiplicity of the reservoir or system.  Precisely specifying the state of the system means 
that it has a multiplicity of 1.  Hence the probability of finding the system with 𝑁𝑁 particles and energy 𝜀𝜀𝑠𝑠 , 
𝑃𝑃(𝑁𝑁, 𝜀𝜀𝑠𝑠) ∝ 𝑔𝑔𝑅𝑅(𝑁𝑁0 −𝑁𝑁,𝑈𝑈0 − 𝜀𝜀𝑠𝑠). 

The relative likelihoods of the system being in states (𝑁𝑁1, 𝜀𝜀1) vs. (𝑁𝑁2, 𝜀𝜀2) is now a ratio of 

multiplicities for the reservoir: 
𝑃𝑃(𝑁𝑁1,𝜀𝜀1)
𝑃𝑃(𝑁𝑁2,𝜀𝜀2) = 𝑔𝑔𝑅𝑅 (𝑁𝑁0−𝑁𝑁1,𝑈𝑈0−𝜀𝜀1)

𝑔𝑔𝑅𝑅 (𝑁𝑁0−𝑁𝑁2,𝑈𝑈0−𝜀𝜀2)
.  We write the multiplicity in terms of the 

entropy: 𝜎𝜎 = log⁡(𝑔𝑔), and then do a Taylor series expansion of the reservoir entropy for small changes 
in particle number and energy (this is very similar to the flow of lecture 7).  The result for the probability 

ratio is 
𝑃𝑃(𝑁𝑁1,𝜀𝜀1)
𝑃𝑃(𝑁𝑁2,𝜀𝜀2) = exp⁡[(𝜇𝜇𝑁𝑁1−𝜀𝜀1)/𝜏𝜏]

exp⁡[(𝜇𝜇𝑁𝑁2−𝜀𝜀2)/𝜏𝜏]
.  The chemical potential μ and temperature τ arise from the partial 

derivatives of the entropy with respect to the particle number and energy, respectively.  The term 
exp⁡[(𝜇𝜇𝑁𝑁1 − 𝜀𝜀1)/𝜏𝜏 is known as the Gibbs factor.  To calculate the probability, we need a normalization 
factor.  In analogy with the partition function Z, we define the Gibbs sum (aka the grand sum, the grand 
partition function) as 𝒵𝒵 = ∑N=0 ∑ e(Nμ−εs )/τ

εs (N) , which is the sum over all possible particle numbers 
in the system, followed by a sum over all possible states of the N-particle system.  This double sum is 
sometimes abbreviated “ASN”, which stands for “all states and numbers of particles.”  Note that the 
number sum starts at N = 0, which gives a term of the form e(0μ−εs (0))/τ.  Ordinarily one takes 
εs(0) = 0, which means that the first term in the Gibbs sum is 1.  Thus the probability for the system to 

have N particles and energy εs  is 𝑃𝑃(𝑁𝑁, 𝜀𝜀𝑠𝑠) = 1
𝒵𝒵

e(Nμ−εs )/τ.  This probability is properly normalized.  

The particle number and energy of the system are both fluctuating quantities, not fixed.  One 
can find the thermal average of both of these quantities by playing ‘derivative games’ with the grand 
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partition function: 〈N〉 = τ ∂log𝒵𝒵
∂μ

= λ ∂log𝒵𝒵
∂λ

, where λ ≡ eμ/τ is called the absolute activity, and 𝑈𝑈 = 〈ε〉 =

�μτ ∂
∂μ
− ∂

∂(1/τ)� log𝒵𝒵.  The higher the chemical potential, the higher the activity λ of the species. 

Now consider an interesting example of dopants in a semiconductor like Si.  Silicon has a valence 
of (3s)2(3p)2 and crystallizes in the ‘diamond structure’ in which each Si atom is covalently bonded to 
each of its 4 nearest neighbors.  If an impurity such as P, As, or Sb is added, it goes in as a substitutional 
defect, impersonating a Si atom.  However these dopants have one additional electron and one 
additional nuclear charge.  The dopant atoms form 4 covalent bonds with the neighboring Si atoms, but 
then have one electron left over.  That electron can orbit the dopant nucleus (of charge +e) in a 
hydrogenic orbital.  One finds that the binding energy of this hydrogenic state is about 30-50 meV, 
depending on the dopant atom, and the electron orbits with a ‘Bohr radius’ of about 3 nm.   

We can treat the single dopant atom as the system.  The reservoir is the Si crystal.  We assume 
that the system and reservoir are in thermal equilibrium at temperature  𝜏𝜏 and diffusive equilibrium 
with chemical potential 𝜇𝜇.  They exchange electrons and energy.  There are three possible states of the 
system: 1)  The dopant is ionized and the electron is at rest at infinity (𝑁𝑁 = 0, 𝜀𝜀 = 0), 2) the electron is 
bound to the dopant ion with spin “up” (𝑁𝑁 = 1, 𝜀𝜀 = −𝐼𝐼), where 𝐼𝐼 is the binding energy of the electron 
on the ion (30-50 meV), and 3) the electron is bound to the dopant ion with spin “down” (𝑁𝑁 = 1, 𝜀𝜀 =
−𝐼𝐼).  In the absence of a magnetic field there is no energy difference between the two bound states.  
The Gibbs sum is 𝒵𝒵 = ∑N=0 ∑ e(Nμ−εs )/τ

εs (N) = ∑ e(0μ−εs )/τ
εs (0) + ∑ e(1μ−εs )/τ

εs (1) .  This becomes 

𝒵𝒵 = 1 + 2e(μ+I)/τ.  The probability the that the dopant is ionized is given by the ratio of the Gibbs factor 

for the ionized state to the Gibbs factor: Pionized = 1
𝒵𝒵

= 1
1+2e(μ+I)/τ   

.  In the limit of low temperature 

where 
(μ+I)
τ

≫ 1, the ionization probability can be approximated as Pionized ≈ 1
2  

e−(μ+I)/τ ≪ 1.  This 

says that doped carriers ‘freeze out’ of a semiconductor at low temperature. 

 

  

 


